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Detached Eddy Simulations of Incompressible Turbulent 
Flows Using the Finite Element Method 

Greg Laskowski’ 

New Technologies Engineering Division 
Lawerence Livermore National Laboratory 

Livermore, CA 94550 

Abstract 

An explicit Galerkin finite-element formulation of the Spalart-Allmaras (SA) 1 - 
equation turbulent transport model was implemented into the incompressible flow 
module of a parallel, multi-domain, Galerkin finite-element, multi-physics code, using 
both a RANS formulation and a DES formulation. DES is a new technique for 
simulating/modeling turbulence using a hybrid RANSkES formulation. The turbulent 
viscosity is constructed from an intermediate viscosity obtained from the transport 
equation which is spatially discretized using Q1 elements and integrated in time via 
forward Euler time integration. Three simulations of plane channel flow on a RANS-type 
grid, using different turbulence models, were conducted in order to validate the 
implementation of the SA model: SA-RANS, SA-DES and Smagorinksy (without wall 
correction). Very good agreement was observed between the SA-RANS results and 
theory, namely the Log Law of the Wall (LLW), especially in the viscous sublayer region 
and, to a lesser extent, in the log-layer region. The results obtained using the SA-DES 
model did not agree as well with the LLW, and it is believed that this poor agreement can 
be attributed to using a DES model on a RANS grid, namely using an incorrect length- 
scale. It was observed that near the wall, the SA-DES model acted as an RANS model, 
and away from the wall it acted as an LES model. 

INTRODUCTION 

The turbulent motion of fluids is a three-dimensional, unsteady physical 
phenomena observed at high Reynolds numbers (Re), the correct and accurate prediction 
of which is required for accurate drag and heat transfer, and particle dispersion 
predictions. Most internal and external aerodynamic problems of interest are at Reynolds 
numbers high enough to be either transitional or fully turbulent, and thus must be 
accounted for when developing a Computational Fluid Dynamics (CFD) package, and 
when conducting CFD simulations. However, this can prove to be a frustrating task, and 
as pointed out by Moin (1998) this “frustration results largely from the mixture of chaos 
and order and the wide range of time scales that turbulent flows possess”. 

’ Summer Intern OO/O 1, Lawerence Livermore National Laboratory, Dept. of Mechanical Engineering 
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Turbulence consists of a continuous spectrum of scales ranging form large scales, 
on the order of the geometry of the flow, down to the smallest scale, known as the 
Kolmogorov scale. Whereas the large scales are largely geometry, or flow dependant, the 
small scales are very nearly homogenous. Kolmogorov introduced the idea of an energy 
cascade which assumes that the turbulent energy produced by the large turbulent 
structures is transferred via the intermediate eddies towards the small eddies where this 
energy is dissipated by viscous effects. The chief difficulty in simulating and/or 
modeling turbulence is the fact that the scales have a strong non-linear dependence on the 
Reynolds number of the flow. 

In the present investigation, a relatively new approach known in the literature as 
DES is investigated in order to more accurately simulate and model turbulence. 
Detached Eddy Simulation (DES) is similar to Large Eddy Simulation (LES) in that it is 
a modeling/simulation technique whereby the large, non-homogenius, energy-carrying 
scales are solved for directly on the computational grid while the small, homogenius, 
primarily dissipative scales are modeled. This is accomplished through the use of a 
model for an artificial viscosity used to represent the effect of the unresolved scales on 
the flow. Whereas LES uses a simple algebraic model, which has a tendency to break 
down near solid walls, to compute the SGS viscosity, DES uses a more complex 1- 
equation transport model which has been developed to more accurately predict the 
turbulent behavior of fluids near such walls. An explicit Galerkin finite-element 
formulation of the Spalart-Allmaras model was implemented into the incompressible 
flow module of a parallel, multi-domain, Galerkin finite-element, multi-physics code 
(Dunn, 2000), using both a RANS formulation and a DES formulation. 

One of the most frequently investigated problems in the literature for turbulence 
modeling and simulation is the flow between two infinite parallel plates. The reasons are 
quite apparent upon inspection. While the geometry is simple, the flow is not. In the 
streamwise and transverse directions the turbulence is homogenous. However, in the 
wall normal direction this is not the case. The presence of the walls has a profound 
impact on the turbulence. In the present investigation, channel flow simulations were 
conducted for plane channel flow at shear Reynolds number Re, = 200, where: 

u, = j.- - is the friction velocity, zw is the wall shear stress, 6 is the channel half-width, 
P 

v is the kinematic viscosity, and p is the fluid density. 

GOVERNING EQUATIONS AND TURBULENCE MODELING 

The governing equations of incompressible flows are the Navier-Stokes 
equations, which take the (PDE) form: 
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where use is made of the Einstein summation convention and Ui is the velocity vector, 
p = P/p is the modified pressure, the pressure divided by the constant density, and fi is 
the external force vector. The equations are written here in nondimensional form in order 
to demonstrate the effect of the Reynolds number on the overall system. The equations 
are a set of coupled, non-linear partial differential equations which, along with the correct 
specification of boundary and initial conditions, govern any fluid in a continuum. It is 
generally agreed that the equations fully govern turbulent flow as the Knudsen number 
(ratio of mean free path to a suitable length scale) is much smaller than the Kolmogorov 
scale of turbulence (HWel, 2000). 

Presently there are three approaches to the simulation and/or modeling of 
turbulence: Direct Numerical Simulation, Reynolds Averaged Simulations, and Large 
Eddy Simulations. A brief description of the benefits and limitions is now given. 

The first approach, and most accurate, is known as Direct Numerical Simulation 
(DNS) whereby the Navier-Stokes equations are solved exactly using high-order spatial 
discretization methods and temporal integration algorithms in a computational domain 
sufficiently resolved to capture all of the spatial scales. Unfortunately, however, this 
requires tremendous computing resources. Consider the channel test case mentioned 
above. For Re, = 200, the number of grid points required is on the order of (Wilcox, 
1993): 

N,, u(3 Re, Yl4 ~1,750,000 

the time step required to accurately represent the temporal scales is on the order of 

0.006 6 4.25e4 At U--- - 
JRe, UT 

and the number of timesteps required to reach a statistical steady state is on the order of 
25,000. Thus, for such a “simple” problem, enormous computational resources are 
required and the problem intensifies as the geometric complexity, and hence Reynolds 
number, increases. 

The second method to simulating/modeling turbulence is to solve the “Reynolds- 
Averaged Navier-Stokes” equations. The Reynolds Averaged Navier Stokes (RANS) 
approach is to simulate the effect of the turbulent scales on the large scales of the 
problem. The velocity in the governing equation is replaced s.t. Ui + (Ui)+Ui where the 
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<> denotes a temporally averaged quantity, and the prime denotes some perturbation 
from the mean. The equations are then averaged in time resulting in the RANS 
equations: 

where the additional term on the RHS of the momentum equation is termed the Reynolds 
stress tensor. A plethora of models exist, in varying degrees of complexity, for the 
Reynolds stress tensor. The RANS approach is currently the only viable option for 
simulating flows at high Reynolds numbers. Unfortunately, however, the degree of 
accuracy of the model can vary sharply for one simple reason: the Reynolds stress tensor 
is flow dependant, as opposed to a fluid dependant, property. As such, a model that was 
developed and calibrated for one flow may not be all that accurate when used in another. 
More to the point, the large-scale turbulent structures that would have existed in a time- 
dependant simulation are strongly dependant on the geometry and boundary conditions. 
When these scales are averaged and modeled, the model is only as good as the problem 
for which the model was originally developed. 

The third method used for simulating/modeling turbulence is really a hybrid 
approach combining the strengths of DNS and RANS while attempting to discard their 
weaknesses. Large Eddy Simulation (LES) is an approach where one solves for the large, 
non-homogenous (Le. geometry dependant) scales and models the small homogenous 
scales. In order to distinguish between large scales and small scales, the Navier-Stokes 
equations are filtered: 

iii (?2, t) = G@ - E A)ui e, t)d3e 

where G is the filter function. The most common filter function found in the literature is 
the volume-average box filter: 

Applying the filter to the Navier-Stokes equations results in: 
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where the convective flux is generally written as: 

- 
, I  

R, =uiu j  

Lu, Cij, and RU are the Leonard, cross, and Reynolds stresses respectively. The governing 
equations for LES can be re-written in a form strikingly similar to the RANS equations: 

where 
- -- -- 

Tu = U i U j - U i U j  

and, as with RANS, the sub-grid shear stress (SGS) term needs to be modeled. Unlike 
RANS, however, this model needs only to model the small, primarily dissipative, nearly 
homogenous scales of turbulence. The most commonly used SGS model is the simple, 
yet effective Smagorinsky model: 

where S is the filtered strain rate and eddy viscosity (or SGS viscosity) VT is: 

V, = CA2 (SI 

where 

A is the cell volume and C is the Smagorinsky constant which is set to 0.1 1 as determined 
from analysis of homogeneous turbulence. 

The Smagorinsky model is a simple model that works well for homogenous 
turbulence. However, in wall-bounded flow it is severely limited and breaks down due to 
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the fact that it doesn’t account well for the diminishing length scale near solid walls 
(Laskowski, 1998). Furthermore, in flows with large separation regions, it has been 
shown that the accuracy of the model is suspect. 

Spalart (2000) has suggested yet another approach to the modeling of turbulence: 
Detached Eddy Simulation (DES). Whereas LES is really a hybrid of DNS and RANS, 
DES is a hybrid of LES and RANS. Instead of using the Smagorinsky model as the SGS 
model, he proposed using the Spalart-Allmaras (SA) 1 -equation turbulence model 
(Spalart, 1992), originally developed for turbulent boundary layers, shear layers, and 
separated flows. Away from the wall, the model is essentially the Smagorinsky model 
whereas near the wall, the model has been calibrated to account for both attached and 
detached flows. The model is a transport model, which solves for the SGS viscosity: 

SGS VISCOSITY 

TRANSPORT EOUATION 

N fl cb2 fl fl 
Dt f x k  cT f x k  f x k  

- C$V - CWlfW (v + V)- + --- DV -- 

ADDITIONAL RELATIONS 

1/6 X 1 + CZ3 ; fV2 = 1 - ; f w = g  x3 + C t I  1 + Xf,, g6 + 4 3  

x3 
fvl  = 

CLOSURE COEFFICIENTS 

cbl = 0.1355; cb2 = 0.622; cV1 = 7.1; CT = 2/3; 

, cW2 =0.3; cw3 =2; ~ = 0 . 4 1  

Finally, in the above expressions ‘d’ is the length scale, which for a RANS simulation is 
the minimum distance to a wall, and for DES is: 

d = min@DEsA”3,dwd,) 
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where CDES is a constant and is usually set to 0.6 1. 

NUMERICAL FORMULATION 

ALE3D is an unstructured, multi-domain, multi-physics finite element code. The 
incompressible flow module uses the Galerkin Finite-Element Method (FEM) as 
presented in Gresho (1 984). Prior to this effort, the governing equations were integrated 
in time using the first-order forward Euler scheme and the turbulence was simulated 
using the Smagorinsky model to compute the SGS stress without a wall correction term 
(i.e. van Driest). In order to implement the SA model, the transport equation for the eddy 
viscosity was first discretized using a finite-element approach similar to that used for the 
momentum transport equation. The residual function is formed and multiplied by an 
appropriate test function, which for the GFEM method is the basis function. The 
resulting expression is then integrated by parts to eliminate any second order derivatives 
thus arriving at the weak form: 

where the last term is the natural boundary condition. The source terms on the RHS are 
evaluated at the element level whereas the transport variable in the advection and 
diffusion term are replaced with the expansion: 

to yield: 

where SI, Sz, and S3 are the three source terms. The above expression is integrated in 
time using first order forward Euler, and the expression can be recast in terms of element 
matrices as: 

M..Vn+’ = MijVY + AtbijVY - KijVY + S, + S, + S, 1 
‘J J 

Finally, multiplying through by the inverse of the (lumped) mass matrix, Mc, the value of 
‘nutilda’ at each node for a single element takes the form: 
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Now, the SGS viscosity is an element quantity, as opposed to a nodal quantity like 
‘nutilda’. In order to assemble the global value of ‘nutilda’ the contribution from the 
source terms at the element level had to be averaged in such a way that the corresponding 
contribution from the RHS (Le. source terms) was specified at each node. This was 
accomplished with a simple arithmetic average, with no weighting from the neighboring 
element volumes. Once the source terms are changed from being an element quantity to 
a nodal quantity, the global nodal value of ‘nutilda’ is assembled, and updated in time. 
Since we are using hexahedral elements, the element value of the SGS viscosity is then 
found from another arithmetic average: 

Initialization and Boundary Conditions 

Since the governing equation for the SGS viscosity is a first-order (in time) PDE 
for ‘nutilda’, an initial condition is required. This proved to be somewhat challenging in 
that ‘nutilda’ is a non-linear function of the SGS viscosity, namely: 

Ideally the algebraic Smagorinsky model would be used for several hundred iterations in 
order to determine a good initial guess for the SGS viscosity from which the initial value 
of ‘nutilda’ could be determined. This requires the use of a Newton solver, which was 
not implemented due to time restrictions. Instead, the value of nutilda was initialized to 
the molecular viscosity, which, while successful, is ultimately a poor choice requiring far 
too many iterations to arrive at a realistic value since, typically, v << vSGs (except, of 
course, in the viscous sublayer). 

Only two boundary conditions for ‘nutilda’ were implemented, namely: no-slip, 
where the turbulent viscosity is set to zero along walls, and natural boundary conditions. 
The later is quite questionable as it is extremely desirable to specify inflow values of 
turbulence in order to conduct realistic numerical simulations. While the natural 
boundary condition seems to function at inflows, it might be advantageous to implement 
an inflow boundary condition to fix the value of the SGS viscosity, and thus ‘nutilda’ at 
an inflow! For example, it would not be possible to investigate the effect of fieestream 
turbulence intensity on the skin friction for turbulent flow past a flat plate! 

Time Step Control 
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Since the formulation outlined early is an explicit formulation, the SGS model has 
its' own stability limits for At. Unfortunately, however, the stability limits are not clear 
due to the extreme non-linearity of the model. In the current investigation, it is assumed 
that the At computed from the stability limit of the Navier-Stokes equations is sufficiently 
small to ensure stability of the SGS model. This is definitely not a hard and fast rule, and 
this assumption is extremely suspect. One possible way 
set (Wilcox, 1993, page 297): 

in determining the time step is to 

It should be noted however, that this stability restriction is an absolute restriction and is, 
in fact, far too restrictive. The actual At required for the SGS model to be stable probably 
lies somewhere in between the value computed for the Navier-Stokes stability limit and 
the limit just described. 

TIME INTEGRATION OF THE NAVIER-STOKES EQUATIONS 

As mentioned previously, in order to conduct unsteady DES simulations several 
ingredients are necessary: 

1. 
2. 
3. Robust SGS model 

Accurate spatial resolution (Le. grid, algorithm). . .at least 2"d order 
Accurate temporal integration.. .at least 2"d order accurate 

Having focused much attention on requirement number 3, the integration of the Navier- 
Stokes equations was investigated. The original version of ALE3D integrated in time 
using the 1 st order forward Euler method: 

This method, however, is not sufficiently accurate for temporal integration and therefore 
the 2"d order AB2 method was implemented (Gresho, 2000): 

RESULTS 

Results are presented for plane channel flow with Re, = 200. The geometry and 
flow conditions were taken from Piomelli (1993) and Laskowski (1 998). However, in 
order to validate the implementation of the SA model, a scaled down 'FUNS' grid of the 
channel was constructed and investigated. Table 1 presents the geometry and grid 
parameters used for the simulation validations case. 
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Table 1 .  Validation Case for Plane Channel Flow Simulations 

Lx 
4n: 

LY Lz Nx NY NZ Ax+ A Y L  AZ+ 

2 rc 60 80 1 41.9 0.5 628.3 

Figure 1 shows the grid in the xy plane. Note that the grid lines are clustered 
towards the walls in order to more accurately predict the regions of strong gradients. 

Mcsn p l o t  
Mesh: rneah-3d 
O B I  cnannel-001.060000 
C y c l e :  60006 
T ~ m c :  23.L)6 

x F l X l S  

-6 -2 0 2 4 6 

-6 -Lt -2 0 2 
x F l X l S  

Y 

Figure 1. Computational grid in the xy plane. 

Y 6 

A parabolic velocity profile, with a maximum value of 20, was specified at the 
inflow, whereas a zero natural boundary condition was set at outflow. No slip walls were 
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set at the upper and lower walls, and the symmetry boundary condition was invoked for 
the single element out of plane. 

30 

25 

20 

5 1 5 -  

Three separate cases were conducted in order to investigate the effect of the 
turbulence model on the overall flow-field: 1) Smagorinsky, 2) SA-RANS, 3) SA-DES. 
Each case uses the same grid and the same initial and boundary conditions. Thus, any 
differences seen in the results can be attributed to the turbulence model. 

- 
- 

- 

Figure 2 depicts the eddy viscosity for cases 1 ,2  and 3. The first thing to note is 
that while the turbulent viscosity predicted by the SA model goes to zero near the wall, as 
desired, the value predicted by the Smagorinsky does not. Thus, there really is no 
viscous sub-layer for case 1. Furthermore, it is interesting to note that the SA-RANS 
model predicts a maximum value of VT which is 6 times that of the Smagorinsky 
predictions. This might be attributed to the fact that the Smagorinsky model is primarily 
used to dissipate the small scales of turbulence whereas the grid being used is essentially 
a RANS grid thus resulting in a lower predicted value of the SGS viscosity. The length- 
scale which is used for the RANS simulation is correct (d = d,n) whereas the length 
scale being used by the Smagorinsky model is not (d = C,,EsA1’3). Finally, note that the 
DES and Smagorinsky results agree well in the core of the flow where the DES model is 
using the LES length scale, and thus the model breaks down to a Smagorinsky-type 
model. 

Smagorinsky 
_ _ _ _  Spalart Allmaras (RANS) 

Spalart Allmaras (DES) 

\ 
r / \  

’ \  
\ / 

‘ \  
\ / 

\ / \ / . .  . .  . .  
\ I  \ ;  

1 . .  . .  . .  
. .  \ i  

. .  . .  . .  \ :  
\ ;  . .  ; I  I 

\ /  
\ i  i ; I  

. .  . .  

. .  . .  
i j  . .  . .  . .  
. .  

\ i  

\ :  

0 :  l 2 - L  0.5 I 

Y 
1 .a 

Figure 2. Comparison of turbulent viscosity profiles. 
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Figure 3 presents the velocity profiles in global coordinates. It is immediately 
evident that the SA-RANS simulation predicts a much fuller velocity profile than does 
either the SA-DES simulation or the Smagorinsky simulation. Also, the point where the 
SA-DES model switches from RANS to LES mode is evident around y = 0.1 and y = 1.9. 
In order to determine if the predicted shear stress is correct, the velocity profile will be 
plotted against the Log-Law of the Wall. 

Smagorinsky 
- Sualart Allmaras - - -  

Y 

Figure 3. Comparison of velocity profiles in global coordinates. 
I I 

Figures 4 and 5 present the sternest test yet for the model implementation: 
comparison against theory. The exact profile for channel flow is known and termed the 
‘Log Law of the Wall’ (LLW) which consists of 3 regions: the viscous sub-layer 0 < y+ < 
10: 

u =-, 
UT V 

the buffer layer 10 < y+ < 15, and the log-layer 15 < y+ < 6:  

1 
u+ = -ln6+ )+ B 

K 

where K is the von Karman constant, 0.41 and B is the van Driest constant, 5.1-5.5, both 
of which were empirically determined. It should be noted that the above cutoffs for the 
different turbulent regions are hard and fast. 
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Referring to Figures 4 it can be seen that the SA-RANS model is in very good 
agreement with the LLW solution. The viscous sublayer is in excellent agreement with 
theory. In the buffer layer, it is evident that the model is transitioning from the viscous 
sublayer to the log-layer, albeit at a more gradual rate than predicted by theory. 
Futhermore, it is evident that while the SA-RANS simulation results in a log-layer with 
the correct slope (Le. the von Karman constant, K), the y-intercept (i.e B) is over 
predicted by 4-10% (depending on the value of B). 

Log Law of the Wall (Exact) 
Spalart-Allrnaras (RANS) I 

I I I I I l l l l  I I I l l l t l  

1 (2’ I W  

Y’ 

Figure 4. Comparison of SA-RANS simulation velocity profile with Log Law of the 
Wall, F 0.41 and B = 5.1. 

Figure 5 presents the results of all three cases when compared to a curve fit for the 
LLW. This figure is also is a good indicator of where the SA-DES model switches from 
RANS mode to DES mode. The SA-DES model is in good agreement near the wall, 
where it is using the correct length scale, but is in poor agreement in the log-layer where 
it is using the wrong length scale. However, it is interesting to note that the agreement 
between the Smagorinsky model and the SA-DES model in the core of the flow is in 
excellent agreement, as expected. This can be viewed as an indication that the SA-DES 
model is ready to be run on a DES grid, as opposed to the RANS grid used in the current 
investigation. Finally, looking at the Srnagorinsky results, it is interesting to note that a 
viscous sublayer does seem to be evident which never transitions into a log-layer. 
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+ 
1 

I I I , I I I l l  I I I I l l l l  

10’ l-02 
Y+ 

Figure 5. Comparison of Casel, Case2, and Case3 velocity profiles with LLW. 

CONCLUSIONS AND RECOMMENDATIONS 

An explicit GFEM formulation of the Spalart-Allmaras 1 -equation turbulent 
transport model was implemented in ALE3D as both a RANS model and as a DES 
model. Simulations of plane channel flow using the model as a RANS model and as a 
DES model, on a RANS grid were, conducted in order to validate the implementation. 
Excellent agreement was observed between the SA-RANS results and theory, namely the 
Log Law of the Wall. The results obtained using the SA-DES model did not agree as 
well, and it is believed that this poor agreement can be attributed to using a DES model 
on a RANS grid. In short, the length scale that the model uses in the LES region is 
incorrect as the grid is far too coarse. However, it should be pointed out that near the 
wall, the SA-DES model acted as a RANS model, and away from the wall it acted as an 
LES model, as can be seen by comparing the turbulent viscosity in the core of the flow 
with results obtained using the Smagorinsky model. The natural next simulation to 
investigate is DES of channel flow on an LES grid, namely the simulations conducted by 
Piomelli (1989) and reproduced by Laskowski (1998). 

Finally, there are several issues, which must be addressed in both the near and 
distant hture, listed in order of priority in Table 2. 
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Table 2. Problems with current implementation and suggested fixes. 

Problem 
SA model incapable of restarting. 
ElementjNode source term treatment 
treated with algebraic average 

v” + v at first timestep (initialization). 

Stability of model questionable. 

Too many time steps required. 

Possible Solution 
Bug in code. Find and fix. 
Should be weighted based on element volumes 
comprising a node. In code.. .commented out, 
but buggy. 
Run Smagorinksy for several iterations and use 
Newton’s method to determine ‘nutilda’ based 
on Smagorinslq SGS viscosity. 
Make At dependent on stability restriction of 
SAmodel. OR 
Go implicit. 
Make model/governing equations implicit 
rather than exdicit. 
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APPENDIX 

The ALE3D and TRUEGRID input files used for the simulations are attached for 
the sake of completeness. Note that Casel, Case2 and Case3 use the same two files 
making sure to switch ‘itrb’ in channelh to the appropriate flag. 

Channel. in 
# 2d poiseuille flow 

DECOMP 
# metis 

END 
partitions 1 

CONTROL 
stopcycle 60000 
dtinit 1. e-8 
dtmax 1.0 
dtmin 1.e-8 

END 

OUTPUT 
plotac 0 
dumpcycle 20 le9 
plotcycle 20 le9 
numcycdigits 6 

plotvar deleteall 
plotvar add p ul u2 u3 

END 

BOUNDARY 
table const table 0.0 1.0 
spacetable inst 1.0 y 0.0 poly 1.0 0.0 -1.0 

incvel-loadcurve pzl 

incvel-loadcurve pz2 

incvel-loadcurve p y l  

incvel-loadcurve py2 

const table 

const table 

const table 

const table 
turbwall pyl 1.0 # 
turbwall py2 1.0 # 

# incvel-loadcurve pxl 
table const-table 
# inctrac-loadcurve pxl 
incvel-loadcurve ppxl 

table const-table 

0.0 
END 

incvelocity nall 

0.0 0.0 0.0 1.0 1 table 

0 .0  0.0 0.0 1.0 1 table 

1.0 0.0 0.0 0.0 0 table 

1.0 0.0 0.0 0.0 0 table 

0.0 0.0 0.0 0 table const table 
0.0 0.0 0.0 0 table constiable 
spacetable inst 1.0 1.0 0.0 0.0 0 

12.56636 table const-table 
spacetable inst 1.0 20.0 0.0 0.0  0 

spacetable inst 20.0 0.0 
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INC FLO W 
incdivfree 1 
inctime 1 
irke 1 
solverparams 

solverlib hypre 
solver superlu 
schurreduction 1 
outputlevel 1 

END 

MATERIAL a 1 

END 
incinput rho 1.0 PO 0.0 rnu 0.005 itrb 2 smagc 0.1 

18 



Channel.tgi 
title truegrid file 
ale3d 
partmode i 

C 
c parameters 

para nx 60; 
para ny 80; 
para nz 1; 

C 

para 1 12.566371;  
para h 2 . 0 ;  
para w 3.14159; 
para xl [ -%1/2.1 ; 
para x2 [ +%1/2.1 ; 
para yl [ -%h/2.1 ; 
para y2 [ +%h/2.1 ; 
para zl [ -%w/2 .1  ; 
para z 2  [ + % w / 2 . 1  ; 

C 
c create the fluid block 

c using partmode i 
block 1;l;l; 

C 

[ %xll [ %x21 ; 
[ %y11 [ %Y21 ; 
[ %z11 [ 8221 ; 

C 
c set gridsize 
C 
mseq i [ %nx-11 
mseq j [ Piny-11 
mseq k [ %nz-l] 
das 1 1 1 2 2 2 j 0.0025 0.0025 

C 

c create nodesets 
C 

nseti ;;;= nall 
nseti -l;;;= pxl 
nseti -2;;;= PX2 
nseti ;-l;;= PYl 
nseti ; - 2 ; ; =  PY2 
nseti ;;-l;= pzl 
nseti ;;-2;= pz2 

nseti -1;;; = ppxl 
nseti ;-I;; - ppxl 
nseti ;-2;;  - ppxl 
nseti - 2 ; ; ;  = ppx2 
nseti ;-1;; - PPX~ 
nseti ; - 2 ; ;  - PPX~ 
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mate 1 
endpart  

L 

c merge 

t p  1.e-7 
merge 

C 

C 

c c r e a t e  nodesets 

n s e t c  n a l l  n a l l  
n s e t c  pxl  pxl  
n s e t c  px2 px2 
n s e t c  pyl  pyl  
n s e t c  py2 py2 
n s e t c  p z l  pz l  
n s e t c  pz2 pz2 

C 

n s e t c  ppxl ppxl 
n s e t c  ppx2 ppx2 
n s e t c  ppzl ppzl 
n s e t c  ppz2 ppz2 

w r i t e  

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
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